The first symmetrical tetrarheniumcyclodiyne type cluster containing phosphine ligands: $\mathrm{Re}_{4}(\mu-\mathrm{O})_{4} \mathrm{Cl}_{4}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\right)_{3}\right]_{4}$

Sophia S. Lau, Phillip E. Fanwick and Richard A. Walton*
Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, USA. E-mail: walton@chem.purdue.edu

Received 28th April 1999, Accepted 27th May 1999

The reactions of methanol solutions of cis- $\mathrm{Re}_{2}\left(\mu-\mathrm{O}_{2}-\right.$ $\left.\mathrm{CCH}_{3}\right)_{2} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ with $\mathrm{PAr}_{3}\left(\mathrm{Ar}=\mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.$ m or $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$) afford the quadruply bonded dirhenium(IV,II) complexes $\quad \mathrm{Cl}_{2}(\mathrm{MeO})_{2} \mathrm{ReReCl}_{2}\left(\mathrm{PAr}_{3}\right)_{2}$, whereas $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}$ gives the complex $\mathrm{Re}_{4}(\mu-\mathrm{O})_{4}-$ $\mathrm{Cl}_{4}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}\right]_{4}$, which X-ray crystallography has shown is the first symmetrical, neutral, tetrarheniumcyclodiyne type cluster containing phosphine ligands.

The reactions of the dirhenium(III) carboxylate complex cis-$\mathrm{Re}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (1) with triphenylphosphine in primary alcohol solvents are unusual in that they afford the unsymmetrical, quadruply bonded, alkoxide complexes $\mathrm{Re}_{2} \mathrm{Cl}_{4}(\mathrm{OR})_{2}\left(\mathrm{PAr}_{3}\right)_{2}$ (2), $\mathrm{Ar}=\mathrm{Ph}$ [eqn. (1)], which are formally

$$
\begin{align*}
& \text { cis }-\mathrm{Re}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}+2 \mathrm{PAr}_{3}+2 \mathrm{ROH} \longrightarrow \\
& \mathrm{Re}_{2} \mathrm{Cl}_{4}(\mathrm{OR})_{2}\left(\mathrm{PAr}_{3}\right)_{2}+2 \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+2 \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{align*}
$$

$\operatorname{Re}($ IV $)-\operatorname{Re}($ II $)$ species that are derived from the $\operatorname{Re}($ III $)-\operatorname{Re}($ III $)$ core by an intramolecular disproportionation. ${ }^{1}$ Subsequently, Chisholm and co-workers ${ }^{2}$ discovered the remarkable compound $\quad \mathrm{Mo}_{2}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{4}(\mathrm{dmpe})_{2} \quad\left(\mathrm{dmpe}=\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}\right)$ which is formally a $\mathrm{Mo}(\mathrm{IV})-\mathrm{Mo}(0)$ complex, i.e. $\left(\mathrm{Pr}^{\mathrm{i}} \mathrm{O}\right)_{4} \mathrm{Mo}-$ $\operatorname{Mo}(\mathrm{dmpe})_{2}$, and retains a metal-metal multiple bond. ${ }^{3,4}$

Our interest in probing the factors which favor the stability of unsymmetrical structures such as $\mathbf{2}$, coupled with attempts to design synthetic strategies to the symmetrical isomer 3 , \dagger have led us to study the reactions of the synthon cis-Re $2_{2}\left(\mu-\mathrm{O}_{2}\right.$ $\left.\mathrm{CCH}_{3}\right)_{2} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{5}$ with triarylphosphines which vary in basicity and cone angle. We report in the present communication our findings concerning the reaction of 1 with $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}$ in methanol which affords a route to the prototype of a new class of neutral, symmetrical, tetrarheniumcyclodiyne type of cluster, viz., $\mathrm{Re}_{4}(\mu-\mathrm{O})_{4} \mathrm{Cl}_{4}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}\right]_{4}(\mathbf{4})$

Although methanol solutions of 1 react with $\mathrm{PAr}_{3}(\mathrm{Ar}=\mathrm{Ph}$, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-m$ or $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$) to yield methoxide complexes of type 2 , reactions with $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}$ afford the red complex $\mathbf{4}$ under these same conditions. \ddagger This compound could be isolated reproducibly in yields of $c a .35 \%$. The use of refluxing ethanol as the reaction solvent produced only very small quantities of 4 ; the major product was the dirhenium(III,II) complex $\mathrm{Re}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right) \mathrm{Cl}_{4}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}\right]_{2},{ }^{6} \S$ along with small amounts of $\mathrm{Re}_{2} \mathrm{Cl}_{6}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}\right]_{2}$ and $\mathrm{Re}_{2} \mathrm{Cl}_{4}(\mathrm{OEt})_{2}-$

Fig. 1 ORTEP ${ }^{13}$ representation of the structure of the tetranuclear cluster $\mathrm{Re}_{4}(\mu-\mathrm{O})_{4} \mathrm{Cl}_{4}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}\right]_{4}$ in crystals of $\mathbf{4 \cdot 2 \mathrm { MeOH }}$. Thermal ellipsoids are drawn at the 50% probability level except for the phenyl group atoms of the $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}$ ligands which are circles of arbitrary radius. Unlabeled atoms are related to the labeled atoms by an inversion center. Selected bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$: $\operatorname{Re}(1)-\operatorname{Re}(2) 2.2726(5), \operatorname{Re}(1)-\operatorname{Re}(2)^{\prime} 2.5388(5), \operatorname{Re}(1)-\mathrm{Cl}(1) 2.350(2)$, $\operatorname{Re}(2)-\mathrm{Cl}(2) 2.359(2), \operatorname{Re}(1)-\mathrm{P}(1) 2.521(2), \operatorname{Re}(2)-\mathrm{P}(2) 2.524(2), \operatorname{Re}(1)-$ $\mathrm{O}(1) 1.943(5), \operatorname{Re}(1)-\mathrm{O}(2) 1.995(5), \operatorname{Re}(2)-\mathrm{O}(1) 1.960(5), \operatorname{Re}(2)-\mathrm{O}(2)$ 1.988(5); $\operatorname{Re}(1)-\operatorname{Re}(2)-\operatorname{Re}(1)^{\prime} \quad 90.099(16), \quad \operatorname{Re}(2)^{\prime}-\operatorname{Re}(1)-\operatorname{Re}(2)$ 89.901(16), $\quad \mathrm{Cl}(1)-\mathrm{Re}(1)-\mathrm{P}(1)$ 84.16(7), $\quad \mathrm{Cl}(2)-\mathrm{Re}(2)-\mathrm{P}(2)$ 84.41(7), $\mathrm{O}(1)-\operatorname{Re}(1)-\mathrm{O}(2) 96.0(2), \mathrm{O}(1)-\mathrm{Re}(2)-\mathrm{O}(2) 95.7(2), \operatorname{Re}(1)-\mathrm{O}(1)-\operatorname{Re}(2)$ 81.15(19), $\operatorname{Re}(2)-\mathrm{O}(2)-\operatorname{Re}(1)$ 79.19(19). The four Re atoms shown are those of the primary form of a disorder in which a secondary form (atoms $\operatorname{Re}(3)$ and $\operatorname{Re}(4)$), appearing to share the same ligand atoms, is in a plane approximately orthogonal to the primary form. The distances $\operatorname{Re}(3)-\operatorname{Re}(4)$ and $\operatorname{Re}(3)-\operatorname{Re}(4)^{\prime}$ are $2.275(8) \AA$ and $2.528(8) \AA$, respectively
$\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}\right]_{2}$. The substitution of the pyridine analogue cis- $\mathrm{Re}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2} \mathrm{Cl}_{4}(\mathrm{py})_{2}$ for $\mathbf{1}$ in the reaction with $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ OMe-p $)_{3}$ in refluxing methanol afforded 4 in low yield $(<10 \%)$. While the reaction temperature may be important in the formation of 4 , the origin of the oxygen in the $\left\{\operatorname{Re}_{4}(\mu-\mathrm{O})_{4}\right\}$ core of $\mathbf{4}$ is probably the alcohol solvent and not coordinated or adventitious water since the addition of varying amounts of water did not increase the yield of this product.

The diamagnetic complex 4 was shown by X-ray crystallography to contain a rectangular cluster of metal atoms with two $\mathrm{Re}=\mathrm{Re}$ bonds and two Re-Re bonds. $\|$ Formally, this unit arises from the $[2+2]$ cycloaddition of two $\mathrm{Re} \equiv \mathrm{Re}$ units (derived from two molecules of $\mathbf{1}$) by loss of their δ components. An ORTEP representation of the structure of $\mathbf{4}$ is shown in Fig. 1. This centrosymmetric cluster possesses Re-Re
bond distances of 2.273(1) \AA and 2.539(1) \AA, the longer distance being associated with the $\left[\operatorname{Re}(\mu-\mathrm{O})_{2} \operatorname{Re}\right]$ units. These $\operatorname{Re}=\operatorname{Re}$ and Re-Re bond distances are similar to those encountered in the $\left[\mathrm{Bu}_{4}{ }^{\mathrm{n}} \mathrm{N}\right]^{+}$salts of the $\left[\mathrm{Re}_{4}(\mu-\mathrm{O})_{2}(\mu-\mathrm{OMe})_{2} \mathrm{Cl}_{8}\right]^{2-},\left[\mathrm{Re}_{4}(\mu-\mathrm{O})_{2}(\mu-\right.$ $\left.\mathrm{OMe})(\mu-\mathrm{Cl}) \mathrm{Cl}_{8}\right]^{2-}$ and $\left[\mathrm{Re}_{4}(\mu-\mathrm{O})_{2}\left(\mu-\mathrm{Cl}_{2} \mathrm{Cl}_{8}\right]^{2-}\right.$ anions that have been structurally characterized by Cotton and co-workers. ${ }^{7,8}$ Unlike the latter species, compound $\mathbf{4}$ is neutral, contains phosphine ligands, and is the first tetrarheniumcyclodiyne type cluster with a $\left[\operatorname{Re}_{4}(\mu-\mathrm{O})_{4}\right]^{4+}$ core. This compound represents one extreme in the chemistry of molecular rectangles (cyclic quartets) which range from those which contain four separate ligand-bridged metal centers ${ }^{9}$ to those with pairs of ligandbridged multiply bonded dimetal units which may or may not be linked by metal-metal bonds within the rectangular cluster. ${ }^{10}$

While this type of dimerization of quadruply bonded dimetal complexes were first encountered by McCarley and co-workers many years ago, ${ }^{11}$ and has subsequently been developed quite extensively in Mo and W chemistry, ${ }^{12}$ it is rare in Re chemistry. ${ }^{7,8}$ Our work expands this field and provides an interesting and potentially useful synthon for further reactivity studies. While $\mathbf{4}$ does not possess any readily accessible reversible redox chemistry, the $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}$ ligands are substitutionally labile as shown by the conversion of 4 to $\mathrm{Re}_{4}(\mu-\mathrm{O})_{4} \mathrm{Cl}_{4}$ $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}$ upon its reaction with $\mathrm{PMe}_{2} \mathrm{Ph}$. Further studies are underway to develop the reaction chemistry of this new cluster and ones like it.

Notes and references

\dagger Other isomers, based upon a $\left(\mathrm{Ar}_{3} \mathrm{P}\right)(\mathrm{RO}) \mathrm{Cl}_{2} \operatorname{ReReCl}_{2}(\mathrm{OR})\left(\mathrm{PAr}_{3}\right)$ arrangement of ligands, are of course possible.
\ddagger Synthesis of 4: a sample of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}(184 \mathrm{mg}, 0.522 \mathrm{mmol})$ was heated in methanol (20 mL) until it had completely dissolved, whereupon a quantity of $\mathbf{1}(113 \mathrm{mg}, 0.169 \mathrm{mmol})$ was added via an addition sidearm. The resulting reaction mixture was then refluxed for 3 days, and the crop of red crystalline 4 was filtered off, washed with methanol and diethyl ether; yield $67 \mathrm{mg}(33 \%)$. Calc. for $\mathrm{C}_{86} \mathrm{H}_{92} \mathrm{Cl}_{4}{ }^{-}$ $\mathrm{O}_{18} \mathrm{P}_{4} \mathrm{Re}_{4}$ (i.e. $\mathbf{4} \cdot 2 \mathrm{MeOH}$): C, 42.61 ; H, 3.83; Cl, 5.85. Found: C, 41.38 ; $\mathrm{H}, 3.63 ; \mathrm{Cl}, 6.35 \%$. A suitable single crystal of composition $4 \cdot 2 \mathrm{MeOH}$ was selected from this batch for an X-ray structure analysis. Far IR spectrum (Nujol mull): $v(\mathrm{Re}-\mathrm{Cl}) 326 \mathrm{~ms}$ and $276 \mathrm{~m} \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta \mathrm{C}_{6} H_{4}$ of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p+8.15 \mathrm{~m},+7.58 \mathrm{~m},+6.90 \mathrm{~m}$, $+6.80 \mathrm{~m},+6.33 \mathrm{~m},+6.22 \mathrm{~m} ; \mathrm{OMe}$ of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p+3.87 \mathrm{~s},+3.84 \mathrm{~s} ;$ $+3.58 \mathrm{~s} ; \mathrm{MeOH}+3.42 \mathrm{~s}$. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta+13.6 \mathrm{~s}$. Cyclic voltammogram ($0.1 \mathrm{M} \mathrm{Bu}_{4}{ }^{\mathrm{n}} \mathrm{NPF}_{6} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, Pt-bead electrode, scan rate $200 \mathrm{mV} \mathrm{s}^{-1}$, potential range +1.5 to -1.5 V , potentials $v s$. Ag_{-} $\mathrm{AgCl}): E_{\mathrm{p}, \mathrm{a}}=+0.98 \mathrm{~V}$.
\S This product has properties very similar to those of the structurally characterized complex $\mathrm{Re}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CCH}_{3}\right) \mathrm{Cl}_{4}\left(\mathrm{PPh}_{3}\right)_{2} .{ }^{6}$

- Crystal data: $\mathbf{4} \cdot 2 \mathrm{MeOH}\left(\mathrm{C}_{86} \mathrm{H}_{92} \mathrm{Cl}_{4} \mathrm{O}_{18} \mathrm{P}_{4} \mathrm{Re}_{4}, M=2424.19\right)$ at 296 K : space group $P 2_{1} / c$ with $a=13.9995(7), b=23.5126(7), c=14.3633(7) \AA$, $\beta=114.1998(16)^{\circ}, \mathrm{U}=4312.4(6) \AA^{3}, Z=2, D_{\mathrm{c}}=1.867 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo}-$ $\mathrm{K} \alpha)=5.937 \mathrm{~mm}^{-1}$. Data collection performed on a Nonius KappaCCD and the structure solved by direct methods using SIR $97{ }^{13}$ and refined through the use of SHELX-97: ${ }^{13} 35082$ reflections measured, 10854 unique ($R_{\mathrm{int}}=0.101$). Hydrogen atoms included but constrained to ride on the atom to which they are bonded. A cut-off $F_{\mathrm{o}}{ }^{2}>2 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$ used for R-factor calculations to give $R\left(F_{\mathrm{o}}\right)=0.062, R_{\mathrm{w}}\left(F_{\mathrm{o}}{ }^{2}\right)=0.104$, and GOF $=1.138$. Disorder involving the four Re atoms of the rectangular cluster such that there are two incompletely occupied, approximately orthogonal sets, which to a first approximation share the same set of ligand atoms. The multiplicities of the primary and secondary forms are 0.949 and 0.051 , respectively. CCDC reference number 186/1485. See http://www.rsc.org/suppdata/dt/1999/2273/ for crystallographic files in .cif format.

1 (a) A. R. Chakravarty, F. A. Cotton, A. R. Cutler, S. M. Tetrick and R. A. Walton, J. Am. Chem. Soc., 1985, 107, 4795; (b) A. R. Chakravarty, F. A. Cotton, A. R. Cutler and R. A. Walton, Inorg. Chem., 1986, 25, 3619.
2 M. H. Chisholm, J. C. Huffman and W. G. Van Der Sluys, J. Am. Chem. Soc., 1987, 109, 2514.
3 B. E. Bursten and W. F. Schneider, Inorg. Chem., 1989, 28, 3292.
4 R. Wiest, A. Strich and M. Bénard, New J. Chem., 1991, 15, 801.
5 R. A. Walton, J. Cluster Sci., 1994, 5, 173.
6 A. R. Cutler, P. E. Fanwick and R. A. Walton, Inorg. Chem., 1987, 26, 3811.
7 J. D. Chen and F. A. Cotton, J. Am. Chem. Soc, 1991, 113, 5857.
8 F. A. Cotton and E. V. Dikarev, J. Cluster Sci., 1995, 6, 411.
9 See for example: (a) J. A. Whiteford, C. V. Lu and P. J. Stang, J. Am. Chem. Soc., 1997, 119, 2524; (b) K. D. Benkstein, J. T. Hupp and C. L. Stern, J. Am. Chem. Soc., 1998, 120, 12982; (c) K. D. Benkstein, J. T. Hupp and C. L. Stern, Inorg. Chem., 1998, 37, 5404; (d) S. M. Woessner, J. B. Helms, Y. Shen and B. P. Sullivan, Inorg. Chem., 1998, 37, 5406.
10 F. A. Cotton, L. M. Daniels, I. Guimet, R. W. Henning, G. T. Jordon, IV, C. Lin, C. A. Murillo and A. J. Schultz, J. Am. Chem. Soc., 1998, 120, 12531.
11 R. N. McGinnis, T. R. Ryan and R. E. McCarley, J. Am. Chem. Soc., 1978, 100, 7900.
12 F. A. Cotton and R. A. Walton, Multiple Bonds Between Metal Atoms, Oxford University Press, Oxford, 2nd edn., 1993, pp. 554-558.
13 A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacorazzo, A. Guagliardi, A. Moliterni, G. Polidori and R. Spagna, SIR97, J. Appl. Crystallogr., 1999, 32, 115; G. M. Sheldrick, SHELX-97, University of Göttingen, 1997; C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.

Communication 9/03367J

